برچسب: مکانیک تبدیل انرژی

پایان نامه ارشد کارشناسی ارشد رشته مهندسی برق الکترونیک گرایش قدرت:کنترل خودکار تولید سیستم قدرت در حضور منابع انرژی تجدیدپذیر- قسمت 7

حاصله بیان می‌شود.

4-2- حضور DFIG در کنترل فرکانس سیستم قدرت

در شبیه سازی حاضر، بنا بر این است که پاسخ دینامیکی سیستم قدرت تحت  ضرایب مختلف نفوذ تولید بادی و با داشتن سطوح گوناگونی از پشتیبانی توان اکتیو از جانب DFIG بررسی شود. مدل سیستم قدرت مورد استفاده قرار گرفته در شبیه سازی در شکل2-8 نشان داده شده است. پارامترهای سیستم قدرت دو ناحیه ای حرارتی در جدول-1 در بخش ضمیمه آمده است. هنگامیکه اغتشاش باری سبب بروز افت فرکانس در ناحیه می‌شود، تولیدات سنتی و همچنین مزرعه ی بادی DFIG باید برای پشتیبانی فرکانس توان بیشتری را تأمین نمایند. از مدل خطی شده ی سیستم دو ناحیه ای حرارتی که در فصول قبل معرفی شد، به همراه مدل معرفی شده DFIG برای پشتیبانی توان اکتیو جهت نشان دادن قابلیّت‌های رویکرد کنترلی عنوان شده تحت ضرایب نفوذ مختلف استفاده شده است. تنظیم سیستم‌های دروپ و همچنین محاسبه ثابت لختی شبکه در حضور ضریب نفوذ مشخّصی از تولید بادی مطابق رابطه‌های 3-10 و 3-11 محاسبه می‌شود.
تولید بادی DFIG و پشتیبانی توان اکتیو تأمین شده از جانب آن را می‌توان تحت چند حالت بررسی کرد:
DFIG با ضریب نفوذ مشخّص، هیچگونه پشتیبانی فرکانسی را تأمین نمی‌کند. در چنین شرایطی تمام توان مورد نیاز برای جبران افت فرکانس از ژنراتورهای سنکرون و تولید متداول حاصل می‌شود. اغتشاش باری  معادل با 0.1 مبنای واحد در ناحیه ی 1 که مزرعه بادی در آن واقع شده، در ثانیه 5 شبیه سازی اتفاق می‌افتد. شکل‌های 4-1 و 4-2 منحنی‌های افت فرکانس در دو ناحیه برای ضریب نفوذ مختلف را نشان می‌دهد.
زمانی که DFIG پشتیبانی فرکانس را تأمین نمی‌کند، ضریب نفوذ بیشتر تولید بادی به سبب کاهش بیشتر در لختی سیستم منجر به افت بیشتر فرکانس خواهد شد. علاوه بر این در چنین شرایطی با افزایش ضریب نفوذ و در نتیجه اغتشاش فرکانسی حاد تر، توان بیشتری از طریق تولید متداول تأمین می‌شود. شکل‌های4-3 تا 4-5 تغییر توان ژنراتورهای ناحیه 1 و 2 و همچنین توان انتقالی خط ارتباطی بین ناحیه را نشان می‌دهد.
 
 
 
 
 
شکل 4- 1تغییرات فرکانس ناحیه 1 در حضور سطوح مختلف تولید بادی در سیستم قدرت
شکل 4- 2 تغییرات فرکانس ناحیه 2 در حضور سطوح مختلف تولید بادی در سیستم قدرت
 
شکل 4- 3 تغییر توان ژنراتور ناحیه 1
شکل 4- 4 تغییر توان ژنراتور ناحیه 2
 
شکل 4- 5 تغییرات توان انتقالی خط ارتباطی بین ناحیه‌ای
علاوه بر پشتیبانی فرکانسی که تولیدات متداول انجام میدهند، DFIGs نیز می توانند در کنترل فرکانس مشارکت داشته باشند(شکل 3-9). در شکل‌های 4-6 الی 4-8 پاسخ دینامیکی سیستم قدرت شامل تغییرات فرکانس نواحی و تغییرات توان خط واسط زمانیکه DFIG در کنترل فرکانس مشارکت دارد و نیز زمانی که DFIG  پشتیبانی فرکانسی تأمین نمی‌کند و همچنین پاسخ شبکه بدون حضور هیچگونه تولید تجدیدپذیر (پاسخ پایه) رسم شده و با یکدیگر مقایسه می‌شوند. در شبیه سازی توان اضافی تأمینی برای پشتیبانی فرکانس  معادل با 0.05 مبنای واحد (بر پایه توان نامی مزرعه بادی) به رفرنس توان افزوده شده است. فرض شده است سرعت باد در سراسر مزرعه بادی یکنواخت بوده و معادل با 9.5  باشد و در طول دوره شبیه سازی ثابت باقی ماند. در چنین شرایطی مدت زمانی که طول می کشد سرعت چرخش روتور توربین بادی به مرز 0.7 مبنای واحد (حداقل سرعت) برسد معادل با 58 ثانیه می‌باشد.
ضریب نفوذ تولید بادی در ناحیه 20% در نظر گرفته شده است. همانطور که مشخّص است در حضور تولید بادی DFIG و بدون پشتیبانی فرکانس، افت فرکانس نسبت به پاسخ پایه بیشتر است. در حالتی که DFIG در پشتیبانی فرکانس مشارکت دارد، شبکه پاسخ نسبتاً بهتری دریافت می‌کند.
 
شکل 4- 6 تغییرات فرکانس ناحیه 1 برای حالت‌های در نظر گرفته شده
شکل 4- 7 تغییرات فرکانس ناحیه 2 برای حالت‌های در نظر گرفته شده
 
شکل 4- 8 تغییرات توان انتقالی خطوط
با استفاده از تابع پشتیبانی کنترل فرکانس پیشنهادی علاوه بر توان مشخّصی که قبل از بروز اغتشاش DFIG برای شبکه تأمین می‌نمود، تغییر توانی موقّت متناسب با تغییرات فرکانس و همچنین نرخ تغییرات فرکانس جهش افزایش موقّت لختی و ظرفیت تنظیم فرکانس شبکه حاصل می‌شود. با فراهم آوردن این توان اضافی، سرعت روتور کاهش می‌یابد و انرژی جنبشی بیشتری را به شبکه تزریق نموده که منجر به جبران سازی بهتر اغتشاش وارده به سیستم  می‌شود.  در ضریب نفوذ تولید بادی در شبکه ضرب می‌شود تا از توان مبنای مزرعه بادی به مبنای ناحیه تبدیل شود. در ادامه با وارد عمل شدن انتگرال‌گیر‌های کنترل ثانویه تغییرات فرکانس رفته‌رفته کاهش یافته و تقریبا به صفر می‌رسد. در نتیجه تقاضای توان اضافی اکتیو از بین می‌رود و توربین بادی مجدّداً به وضعیت کارکرد معمولی خود وارد شده و سعی در بازیابی سرعت بهینه خود تحت دارد.
شکل‌های 4-9 و 4-10 توان خروجی ژنراتورهای سنکرون در دنبال کردن الگوی بار را در حالاتی که تولید بادی وجود ندارد، ضریب نفوذ DFIG 20% و پشتیبانی فرکانس وجود ندارد و در زمانیکه پشتیبانی فرکانس برقرار هست را با پاسخ پایه مقایسه می‌کند. طبیعتاً زمانی که تابع پشتیبانی فرکانس در DFIG فعّال می‌شود، علاوه بر افزایش توانایی کنترل فرکانس شبکه با کمتر شدن میزان تغییرات توان مکانیکی توربین واحدهای حرارتی، فشار کمتری بر تجهیزات تولید توان متداول نیز وارد می‌آید.
 در نیروگاه‌های بخار حجم قابل توجّهی از بخار در محفظه بخار و باز گرمکن، تأخیری در زمان لازم جهت تغییر توان مکانیکی به وجود می آورد. به همین دلیل واکنش سریع توربین‌های بادی DFIG در تأمین توان اکتیو اضافی و موقّت  برای شبکه، موقعیت خوبی برای کمک به سیستم قدرت در جهت کاهش شدّت افت اولیّه فرکانس پدید می آورد.
شکل‌های 4-11 تا 4-13 پاسخ فرکانسی دو ناحیه و تغییر توان خط انتقالی هنگامیکه مزرعه بادی DFIG پشتیبانی توان اکتیو بیشتری برای شبکه تأمین می کند را نمایش می‌دهد. همانطور که از شکل‌ها استنباط می‌شود با در نظر گرفتن پشتیبانی توان اکتیو بالاتری از سوی DFIG و مزرعه بادی، حضور موثرتر تولید بادی DFIG در کنترل فرکانس اولیّه نیز تضمین می‌شود (ضریب نفوذ تولید بادی 20% می باشد).
 
 
شکل 4- 9 تغییرات توان خروجی ژنراتور سنکرون ناحیه 1
 
شکل 4- 10  تغییرات توان خروجی ژنراتور سنکرون ناحیه 2
شکل 4- 11 تغییرات فرکانس ناحیه 1
 
شکل 4- 12 تغییرات فرکانس ناحیه 2
شکل 4- 13 تغییرات توان انتقالی بین ناحیه 1 و 2

4-3- مشارکت سیستم‌های خورشیدی در کنترل فرکانس سیستم قدرت

برای نشان دادن طرح پیشنهادی کنترلی، مدل سیستم دو ناحیه ای قدرت به کار رفته در بخش قبل مجدّداً استفاده می‌شود. ساختار پیشنهادی برای کنترل اولیّه فرکانس سیستم خورشیدی را می‌توان در سه بخش مدل کرد. ابتدا یک بهره ثابت که ثابت تنظیم دروپ می‌باشد، تغییرات فرکانس ناحیه را دریافت نموده و متناسب با ضریب تقویت سیگنال تغییرات فرکانس و ثابت دروپ  سیگنال کنترلی جدیدی که مشخّص کننده تغییرات رفرنس توان برای مشارکت در کنترل فرکانس است را به مبدل الکترونیک قدرت اعمال می‌کند. همانطور که ذکر شد، از آنجا که مبدل الکترونیک قدرت دینامیک نسبتاً سریعی دارد از دینامیک آن در مقابل باقی ادوات صرفنظر شده است. در ادامه تغییر توان مزرعه خورشیدی در ضریب نفوذ سیستم خورشیدی در شبکه ضرب شده تا از توان مبنای واحد سیستم خورشیدی به توان مبنای ناحیه، تبدیل گردد. در انتها این تغییر توان سیستم خورشیدی که در پی بروز تغییرات فرکانس در شبکه بوجود آمده بود، به شبکه تزریق می گردد.
گرچه با در نظر داشتن یک محدود کننده برای تغییر تولید سیستم خورشیدی می‌توان سقف تولید را در میزان  محدود کرد، اما در این مطالعه صرفاً بنا بر نشان دادن قابلیّت مشارکت مزرعه خورشیدی در کنترل فرکانس شبکه گذارده شده است. ضریب نفوذ تولید خورشیدی معادل 10% توان نامی و تنظیم دروپ سیستم خورشیدی  در نظر گرفته شده است. همچنین میزان تابش خورشید در حدی در نظر گرفته شده که تغییر بار اعمالی به سیستم و افت فرکانس ناشی از آن، منجر به اشباع شدن تولید خورشیدی نگردد.
با در نظر گرفتن سیستم کنترلی دروپ شکل (3-17) برای مزرعه خورشیدی شبیه سازی انجام گرفت. در این قسمت سیستم قدرت دو ناحیه ای حرارتی که در بخش قبل استفاده شده، در نظر گرفته شد. مزرعه خورشیدی در ناحیه دوم واقع شده و اغتشاشی باری معادل با 0.1 در مبنای واحد ناحیه به ناحیه 2 اعمال شده است. در نتیجه انحراف فرکانس در شبکه بوجود می‌آید. جهت از بین بردن این انحرافات، علاوه بر پشتیبانی فرکانسی که تولید متداول تأمین می‌کند، مزرعه خورشیدی نیز در کنترل اولیّه فرکانس شرکت دارد. سیستم کنترلی دروپ واحد خورشیدی تغییرات فرکانس را در اندازه گیری کرده و متناسب با تنظیم دروپ تغییر توان خروجی واحد را مشخّص می‌کند این سیگنال کنترلی که حاوی میزان تغییرات توان است، به الگوریتم تعیین سطح جدید رفرنس ولتاژ برای کارکرد مبدل الکترونیک قدرت اعمال می‌شود. در نتیجه متناسب با تغییر رفرنس ولتاژ، خروجی مزرعه خورشیدی تغییر می‌کند.
شکل‌های 4-14 الی 4-16 به ترتیب پاسخ فرکانسی ناحیه 1 و 2 و همچنین تغییرات توان انتقالی خط ارتباطی را در سه حالت نشان می‌دهد. حالت اول مربوط به زمانی است که در شبکه تولید خورشیدی وارد نشده و اغتشاش بار اعمال می‌شود (پاسخ پایه). حالت دوم زمانی است که تولید خورشیدی با ضریب نفوذ 10% در ناحیه دوم مشغول تولید توان می‌باشد. حالت سوم حالتی است که مزرعه خورشیدی پشتیبانی فرکانسی نیز برای شبکه به همراه دارد.
در پی بروز انحراف فرکانس سیستم گاورنر سرعت تولید متداول، خروجی ژنراتور سنکرون را تغییر می‌دهد. در شکل‌های 4-17 و 4-18 تغییرات ژنراتورهای واقع در ناحیه 1 و 2 در کنار الگوی بار در سه حالت بیان شده فوق نشان داده شده است.
 
 
شکل 4- 14 تغییرات فرکانس ناحیه 1 برای حالت‌های در نظر گرفته شده
 
شکل 4- 15تغییرات فرکانس ناحیه 2 برای حالت‌های در نظر گرفته شده
شکل 4- 16تغییرات توان انتقالی خطوط برای موارد در نظر گرفته شده
 
شکل 4- 17تغییرات توان خروجی ژنراتور سنکرون ناحیه 1
شکل 4- 18تغییرات توان خروجی ژنراتور سنکرون ناحیه 2
نتایج نشان می‌دهد که با به کار بردن سیستم کنترلی دروپ برای واحد خورشیدی ظرفیت جدیدی برای حضور مزارع خورشیدی در کنترل فرکانس شبکه فراهم شده است.

4-4- مشارکت همزمان تولید بادی DFIG و سیستم‌های خورشیدی در کنترل فرکانس سیستم قدرت

در این بخش شبیه سازی تاثیرات استفاده همزمان از تولیدات انرژی تجدیدپذیر در دو ناحیه مورد کنکاش قرار می‌گیرد. مزرعه بادی با ضریب نفوذ 20% در ناحیه 1 و مزرعه خورشیدی با ضریب نفوذ 10% در ناحیه دوم قرار دارند. برای نشان دادن قابلیّت کنترل فرکانس شبکه در حضور منابع انرژی تجدیدپذیر، وقوع افزایش بار پله ای معادل با 0.1 توان مبنا در هر دو ناحیه در ثانیه 5 شبیه سازی، در نظر گرفته شد.
نتایج حاصله کما فی السابق طی سه حالت بیان شده بررسی می شوند. در شکل‌های 4-19 تا 4-21 پاسخ فرکانسی ناحیه 1 و 2 و تغییر توان خط انتقالی نشان داده شده است. در پی تغییرات فرکانس در شبکه، مزرعه بادی DFIG و همچنین مزرعه خورشیدی در کنترل فرکانس شبکه شرکت دارند. در نتیجه بخشی از توان لازم برای برقرار مجدّد تعادل تولید و مصرف، توسط منابع تجدیدپذیر شبکه تأمین گشته شکل4-21 و از طرفی همانطور که شکل‌های 4-22 و 4-23 نشان می‌دهد، فشار مکانیکی وارده به توربین ژنراتورهای سنکرون برای جبرانسازی بار نیز کاهش بیشتری نسبت قبل نشان می‌دهد.
وقتی درخواست توان اکتیو اضافی معادل با 0.05 مبنای واحد (بر پایه توان مزرعه بادی) برقرار است به این معنی است که سقف مجاز برداشت از مزرعه بادی نهایتاً می‌تواند 0.05 مبنای واحد قرار گیرد. این میزان در ضریب نفوذ ناحیه ضریب شده و نهایتاً میزان توان اکتیوی که متناسب با کنترلر پیشنهادی به شبکه تزریق شده است را تعیین می‌کند. علاوه بر این متناسب با کنترل دروپی که برای مزرعه خورشیدی معیّن شده بود، توان خروجی سیستم خورشیدی نیز تغییر می‌نماید. این تغییرات توان منابع انرژی تجدیدپذیر هنگام جبرانسازی افزایش بار و مشارکت در کنترل فرکانس، در شکل4-24 نشان داده شده است.
 
 
 
 
شکل 4- 19تغییرات فرکانس ناحیه 1 برای حالت‌های در نظر گرفته شده
شکل 4- 20 تغییرات فرکانس ناحیه 2 برای حالت‌های در نظر گرفته شده
 
شکل 4- 21تغییرات توان انتقالی خط ارتباطی
شکل 4- 22تغییرات توان خروجی ژنراتور سنکرون ناحیه 1
 
شکل 4- 23تغییرات توان خروجی ژنراتور سنکرون ناحیه 2
شکل 4- 24 تغییرات توان خروجی منابع تجدیدپذیر با استفاده از برنامه‌های کنترلی پیشنهادی

4-5- استفاده از ذخیره‌ساز باتری در سیستم قدرت

همانطور که ذکر شد، با توجّه به نوسان توان و طبیعت غیر قابل پیش بینی تولید توان بادی بهره‌برداران شبکه ترجیح می دهند برای افزایش قابلیّت تنظیم فرکانس شبکه و جبران کسری تولید احتمالی و یا جذب توان، از ذخیره‌ساز‌ها در کنار تولید بادی جهت نرم کردن توان خروجی بادی استفاده کنند. در همین راستا اثر ورود واحد ذخیره‌ساز انرژی باتری BES به سیستم قدرت مورد بررسی قرار می‌گیرد. علاوه بر استفاده از BES چند حالت برای استفاده از باتری در شبکه با ضریب نفوذ مختلف تولید باد و خورشید در دو ناحیه مطرح می‌شود. با استفاده از تنظیمات هر حالت پاسخ شبکه ثبت و ضبط شده و با توجّه تابع هدف یا شایستگی مناسبی مورد سنجش قرار می گیرند. در اینجا تابع شایستگی می تواند سیگنال خطای متعارفی نظیر IAE، ITAE، ITSE و ISE انتخاب شود. تجربه نشان داده است برای کمینه کردن مقادیر خطا با کمترین دامنه در کم ترین زمان سیگنال خطای ITSE می تواند موفق تر ظاهر شود [69].
فرض برینست که ظرفیت ذخیره ساز در دسترس معادل با 0.1 توان مبنا باشد.این مقدار می تواند در کنار تولید بادی، خورشیدی و یا متناسب با ضریب نفوذ تولیدات تجدیدپذیر در دو ناحیه نصب شود. برای نشان دادن اثر افزایش ضریب نفوذ تولیدات تجدیدپذیر با استراتژی های کنترلی پیشنهادی بر پایداری فرکانسی شبکه ترکیبی نهایی، سناریوهای مورد بررسی قرار گرفتند و مقدار تابع برازندگی متناسب با آنها در جدول 4-1 محاسبه شده است:
جدول 4- 1سناریو‌های باتری در شبکه و مقدار شایستگی متناسب با ضریب نفوذ منابع و باتری

سناریو ض. ن. تولید بادی ض. ن. تولید خورشیدی باتری تماماً در ناحیه تولید بادی باتری تماماً در ناحیه تولید خورشیدی تقسیم ظرفیت ذخیره ساز به نسبت ضریب نقوذ در دو ناحیه
1 0.1 0 0.315124    
2 0.2 0 0.323752    
3 0 0.1   0.292224  
4 0 0.2   0.282575  
5 0.1 0.1     0.276772
6 0.1 0.2     0.267122
7 0.2 0.1     0.285383
8 0.2 0.2     0.275714

 
جدول 4-1 نشان می دهد سناریو شماره 4 که در آن فقط تولید بادی در ناحیه 2 وجود دارد و تمام ظرفیت ذخیره‌ساز در همین ناحیه نصب شده باشد، دارای کمترین میزان سیگنال خطای  است. با توجه به ورود همزمان تولیدات بادی و خورشیدی به شبکه، سناریوی 6 نسبت به باقی حالات از پاسخ دینامیکی نسبتاً بهتری برخوردار است. با توجه به نتایج جدول 4-1 اینطور استنباط می شود با افزایش ضریب نفوذ بادی در حضور طرح کنترلی پیشنهادی پاسخ دینامیکی وضعیت نسبتا حاد تری پیدا می کند. این در حالیست که افزایش ضریب نفوذ خورشیدی و کنترل آن بوسیله سیستم دروپ نه تنها باعث کاهش ظرفیت تنظیم فرکانس نخواهد شد که موجب افزایش ظرفیت تنظیم فرکانس نیز شده است. با مقایسه سناریو های 5 و 8 نیز نتایج مشابهی به دست می آید.

4-6- بهینه‌سازی پاسخ دینامیکی شبکه

همانطور که عنوان شد، پس از بروز انحرافی در بار، برای آنکه فرکانس شبکه بدون داشتن انحراف ماندگاری به مقدار نامی خود بازگردد، حلقه کنترل فرکانس ثانویه می‌بایست با بهره‌هایی بهینه، پاسخگوی این نیاز باشند. به عبارت دیگر هدف در اینجا کم کردن تغییرات فرکانس و توان انتقالی خطوط در کمترین زمان ممکن است. علاوه بر این درین مرحله، میزان توان ذخیره ساز نصب شده در هر ناحیه و نیز ضریب نفوذ تولیدات بادی و خورشیدی جهت داشتن پاسخ دینامیکی بهتر وارد بهینه سازی می گردد. مطمئناً با داشتن خصوصیات فوق پاسخ شبکه نسبت به باقی حالات در نظر گرفته شده وضعیت بهتری خواهد داشت.
الگوریتم PSO نسبت به تنظیمات اولیّه حسّاس بوده و پس از چند بار اجرای برنامه مقادیر برای تنظیمات کنترلی الگوریتم انتخاب شد. این مقادیر در جدول-2 در بخش ضمیمه آمده است. با نوشتن کدهای لازم جهت انجام شبیه سازی در نرم افزار Matlab/Simulink r20103a و مرتبط ساختن فایل سیمولینک به بخش محاسباتی الگوریتم شبیه سازی صورت می پذیرد. لازم به ذکر است که مجموع توان ذخیره ساز در دو ناحیه با توجه به مقدار تعیین شده 0.1 توان مبنا فرض می گردد. برای بهینه سازی، سیگنال کنترلی جدیدی ارایه شده که متناسب با قیود حاکم در آن پاسخ بهینه سازی به فرم مطلوب تر همگرا گردد. بدین صورت می توان مدلسازی حل مسئله را به فرم زیر میتوان بیان کرد:

4-1

به صورتی که

4-2
4-3
4-4

در تابع هدف جدید جهت از بین بردن انحراف

پایان نامه ارشد کارشناسی ارشد رشته مهندسی برق الکترونیک گرایش قدرت:کنترل خودکار تولید سیستم قدرت در حضور منابع انرژی تجدیدپذیر- قسمت 2

، فرکانس حاصله به اندازه کافی با فرکانس‌های تشدید فاصله داشته باشد. هرگونه افت فرکانس سبب کاهش سرعت توربین شده و مرز مضارب سرعت با فرکانس‌های تشدید را کم می‌‎کند. بر اثر نزدیک شدن سرعت توربین به یکی از این فرکانس‌های تشدید، دامنه ارتعاشات توربین افزایش می‌یابد و خطر بروز تشدید زیر سنکرون را افزایش می‌دهد [1].

از آن جا که تغییر فرکانس شبکه نتیجه وجود عدم تعادل بین توان تولیدی و مصرفی (به اضافه ی تلفات) است، هر گونه اقدام اصلاحی تغییر سطح تولید و یا مصرف را در پی دارد. برای حفظ فرکانس شبکه راهکارهایی وجود دارند که در زیر به بعضی از آنها اشاره می‌شود:

  1. واحدهای آبی و یا گازی واکنش سریع که قادرند طی زمان محدودی (در چند دقیقه) وارد مدار شده و کمبود شبکه را جبران سازند.
  2. استفاده از ظرفیت آزاد نیروگاه‌ها (رزرو گردان) که مستلزم عملکرد صحیح سیستم کنترل سرعت توربین، موسوم به گاورنر است. ثابت زمانی پاسخ گاورنر در نیروگاه‌های مختلف متفاوت است. به عنوان مثال واحد‌های بخاری که در آن تغییر سریع فشار دیگ بخار مجاز نیست، نیازمند چند ده دقیقه زمان جهت تنظیم بارند. با عملکرد گاورنر نیروگاه‌های شبکه، اضافه بار متناسب با تنظیم دروپ سیستم گاورنر سرعت، بین واحد‌های تولیدی توزیع می‌شود.
  3. از آنجا که توان مصرفی شبکه به سطح ولتاژ آن وابسته است، می‌توان با کنترل ولتاژ شبکه ی توزیع تا حدی تقاضای بار را کنترل کرد. کاهش ولتاژ توزیع منجر به تغییر در بار خانگی می‌گردد. اعمال این تغییرات از طریق تغییر تپ چنجر ترانسفورماتور‌های شبکه میسّر است و نیازمند محدوده زمانی در حدود چند دقیقه است.
  4. یکی دیگر از راه‌های حفظ فرکانس سیستم، حذف بار است. حذف بار یکی از سریع‌ترین راه‌های جبران کمبود توان حقیقی در سیستم قدرت به حساب می‌آید. فاصله زمانی صدور فرمان حذف بار تا انجام آن بسیار محدود بوده و در واقع زمان عملکرد کلیدهای قدرت شبکه تعیین کننده سرعت عمل حذف بار است. زمان لازم برای عملکرد کلید قدرت معمولاً چند سیکل الکتریکی است. صدور فرمان می‌تواند به صورت دستی توسط بهره بردار شبکه و یا توسط مکانیزمی هوشمند و خودکار صادر می‌شود. حذف بار دستی جهت افت ماندگار فرکانس شبکه صورت می‌گیرد و میزان آن در حدود 5% است. حذف بار دستی در واقع زمانی عمل می‌‎کند که ذخیره گردان یا واحد‌های راه اندازی سریع، در کوتاه مدت قادر به جبران عامل افت فرکانس نباشند و وضعیت شبکه به حالت هشدار وارد شده باشد. در برابر حذف بار دستی از حذف بار خودکار برای حذف لااقل چند ده درصد بار شبکه در زمانی بسیار کوتاه استفاده می‌شود. زمان عملکرد حذف بار خودکار مجموع زمان تشخیص افت فرکانس و زمان قطع کلید قدرت است و حداکثر چند ده سیکل الکتریکی به طول می انجامد.

از میان روش‌های فوق، از رزرو گردان در حضور واحد کنترل فرکانس برای جبران نوسانات فرکانسی شبکه که دارای دامنه ای محدود هستند، استفاده می‌شود. در این حالت معمولاً تعادل توان با عملکرد گاورنر واحدهای تولیدی شبکه برقرار می‌شود. حذف بار دستی و کنترل ولتاژ شبکه پس از رسیدن سیستم به وضعیت پایدار مورد استفاده قرار می‌گیرند و به صورت عمده خطاهای ماندگار شبکه را اصلاح می‌کنند. حذف بار خودکار هر چند سریع‌ترین مکانیزم محسوب می‌شود اما آخرین راه حل برای پاسخ به عدم توازن توان حقیقی شبکه است. این راه حل تنها زمانی انتخاب می‌شود که عدم تعادل به قدری بزرگ باشد که گاورنر‌ها فرصت لازم برای پاسخ به آن را نداشته باشند. در این حالت فرکانس شبکه به سرعت افت می‌‎کند و از محدوده ی مجاز کار دائمی خارج می‌شود. با رسیدن وضعیت شبکه به آستانه ی خطر، این مکانیزم سریعاً بار اضافی سیستم را حذف می‌‎کند. مهّم‌ترین اشکال این روش آنست که هزینه ی حفظ انسجام سیستم و حفظ پایداری، قطع برق و انرژی الکتریکی و ضرر مالی منتج به آنست.
افزایش ضریب نفوذ انرژی تجدیدپذیر در سیستم قدرت شاید به معنی ارتقای عدم قطعیت‌ها، موانع جدید در بهره برداری و پیدایش سوال‌های جدید در باب چگونگی کنترل این منابع در کنار ساختار‌هایی مانند کنترل خودکار تولید به نظر آید. سوال مهّمی که در بدو امر نظر مخاطب را به خود معطوف می‌دارد این است که در صورت افزایش ضریب نفوذ منابع انرژی تجدیدپذیر در شبکه، ملزومات کنترل خودکار چگونه با شرایط جدید مطابقت داده می‌شوند؟
اثرات ورود این منابع با ضریب نفوذ بالا در شبکه را، باید در چهارچوب‌های زمانی مناسب دید. در چهارچوب‌های زمانی چند ثانیه تا چندین دقیقه، قابلیّت اطمینان کلی سیستم قدرت تماماً بوسیله ادوات کنترلی خودکار و سیستم‌های کنترلی نظیر کنترل خودکار تولید، سیستم گاورنر سرعت ژنراتور‌ها و سیستم‌های تحریک آنها، پایدارسازهای سیستم قدرت، تنظیم کننده‌های خودکار ولتاژ، رله‌ها و برنامه‌های ‌حفاظتی مخصوص و سیستم‌های تشخیص و عملیاتی خطا در شبکه کنترل می‌شوند. در چهار چوب زمانی چند دقیقه تا یک هفته، بهره‌برداران سیستم می بایست تولید توان را به نحوی مدیریت نمایند تا با برقراری سطحی منطقی و اقتصادی از قابلیّت اطمینان، تولید نیروگاهی را با توجّه الگوی بار مصرف کنندگان و همچنین قیود عملیاتی شبکه تطبیق دهند.
واحدهای تولیدی انرژی تجدیدپذیر باید ملزومات فنی لازم جهت کنترل ولتاژ و فرکانس را در خود داشته باشد و نیز در صورت بروز شرایط هشدار در شبکه از خود انعطاف لازم را نشان دهند. در کنار آن واحدهای تولیدی انرژی تجدیدپذیر می باید سرعت عمل لازم جهت ایزوله ساختن واحد تولیدی در صورت بروز وضعیتی بحرانی در شبکه را از در خود ملحوظ دارد. آنها باید به عنوان عضوی از شبکه الکتریکی به صورت موثری فرمان پذیر باشند و به خصوص بتوانند در زمان بروز اغتشاشی در شبکه زمانیکه امنیت شبکه برق در معرض خطر باشد از خود انعطاف لازم را نشان دهند. ضریب نفوذ بالای تولیدات تجدیدپذیر به خصوص در مکان‌هایی دور از مراکز بار و تولیدات متداول انرژی، خطر اضافه بار بر روی خطوط انتقال توان را افزایش می‌دهد و در نتیجه بازنگری در طراحی شبکه و احیاناً اضافه نمودن خطوط ارتباطی جدید جهت پیش گیری از بروز اضافه بار بروی ارتباطی را طلب می‌‎کند. علاوه برآن به روز کردن کد‌های شبکه در حضور ضریب بالای تولیدات تجدیدپذیر نیز ضروری به نظر می‌رسد.

1-3- ساختار مطالعاتی پایان‌نامه

برای غلبه بر موانع نامطلوب در استفاده از منابع انرژی تجدیدپذیر نظیر باد و خورشید با ضریب نفوذ بالا در شبکه چند ناحیه ای قدرت، داشتن برنامه کنترلی مناسب جهت کنترل فرکانس شبکه ضروری است. از اینرو موضوعی که این پایان‌نامه سعی در پوشش آن دارد، به کنترل فرکانسِ تولید بادی و تولید خورشیدی و مشارکت آنها در کنترل اولیّه فرکانس باز می‌گردد. به طور کلی می‌توان حوزه ی دید کار حاضر را در چند بند زیر خلاصه کرد:

  1. ارایه طرح کنترلی جدیدی برای شرکت دادن تولید خورشیدی در تنظیم فرکانس ناحیه در سیستم چند ناحیه ای قدرت.
  2. مشارکت دادن تولید خورشیدی در کنترل اولیّه فرکانس.
  3. پیشنهاد برنامه کنترلی مناسب جهت استخراج انرژی جنبشی ذخیره شده در جرم چرخان توربین، در پی بروز اغتشاش باری در شبکه و کمک گرفتن از این توان اضافی جهت کم کردن افت اولیّه فرکانس در پی بروز آن انحراف بار در سیستم چند ناحیه ای قدرت.
  4. مشارکت دادن تولید بادی DFIG در کنترل اولیّه فرکانس .
  5. بررسی پاسخ دینامیکی سیستم دو ناحیه قدرت متشکّل از واحد‌های حرارتی در حضور تولید خورشیدی/بادی/ هر دو، در سیستم قدرت.
  6. استفاده از ذخیره‌ساز‌های انرژی برای کاهش نوسانات توان خروجی در سمت تولید بادی و برای کمک به قابلیّت تنظیم فرکانس و جلوگیری از بروز تغییرات شدید توان در سمت تولید خورشیدی.
  7. بهینه‌سازی بهره انتگرال‌گیر‌های کنترل تکمیلی دو ناحیه، ضرایب نفوذ بهینه تولیدات تجدیدپذیر(جهت تأمین سطح بهینه ای از پشتیبانی فرکانس) و همچنین تعیین ظرفیت ذخیره‌ساز در دو ناحیه، برای داشتن کمترین نرخ تغییرات فرکانس دو ناحیه و توان انتقالی خط واسط دو ناحیه.

به این صورت می‌توان مطالبی را که در فصل‌های بعدی بیان می‌شود، سازماندهی کرد. در فصل دوم پیشینه تحقیق مفصلاً بررسی می‌گردد. در فصل سوم به مطالعه و بررسی چگونگی استحصال توان بادی بوسیله DFIG پرداخته می شود. ایده ی استفاده انرژی جنبشی موجود در جرم چرخان توربین بادی و تزریق آن به شبکه جهت کاهش افت اولیّه فرکانس در زمان وقوع افزایش باری در شبکه مورد توجّه قرار می‌گیرد. در ادامه ساختار اصلی واحد تولید خورشیدی معرفی می‌شود. پس از آن برنامه کنترلی مناسبی جهت شرکت دادن تولید خورشیدی در کنترل اولیّه فرکانس بیان می‌شود. فصل چهارم به ارائه نتایج شبیه سازی اختصاص دارد. سیستم دو ناحیه ای حرارتی به عنوان مدل پایه در نظر گرفته می‌شود و پاسخ دینامیکی آن به انحراف بار در هر ناحیه شبیه سازی می گردد. اثر ورود تولید DFIG به شبکه با ضریب نفوذ مشخّصی در حضور برنامه کنترلی جهت پشتیبانی موقّت توان اکتیو و بدون حضور آن، بررسی می‌شود. تاثیرات ورود تولید خورشیدی با ضریب نفوذ بالا در شبکه در حضور استراتژی کنترلی پیشنهادی و عدم حضور آن بررسی می‌شود. در مرحله آخر تاثیرات توأماً ورود تولیدات باد و خورشید، در حضور برنامه‌های کنترلی مربوطه شان و در نبود آنها با مدل اصلی مقایسه می‌شود. در گام بعد با احتساب اثر ورود ذخیره‌ساز پارامترهای مهّم شبکه بهینه‌ می گردند. در فصل پنجم، اقدامات صورت گرفته جهت مطالعه تأثیرات ورود تولیدات بادی DFIG و تولید خورشیدی به شبکه جمع بندی شده و در انتها گام‌ها و پیشنهادهای ممکن در ادامه ی مسیر حاضر بیان می شوند.
 

 

 

فصل دوم: کنترل خودکار تولید

 
 
 
 
 
 
 
 
 

2-1- تعریف مسئله

سیستم قدرت ذاتی غیر خطی و متغیّر با زمان دارد. برای بررسی و تحلیل پاسخ فرکانسی سیستم قدرت نسبت به اغتشاشات کوچک بار می‌توان از مدل خطی شده ی سیستم استفاده کرد. اگرچه که در مطالعات پایداری دینامیکی شبکه، مطالعات کنترل ولتاژ و فرکانس را نمی‌توان مستقل از هم در نظر گرفت، ولی با توجّه به این که دینامیک‌های موجود در پاسخ فرکانسی سیستم در قیاس با دینامیک‌های ولتاژ و زاویه روتور بسیار کندتر عمل می‌کند، می‌توان برای مطالعات پایداری دینامیکی، مطالعات کنترل فرکانس و کنترل ولتاژ و زاویه روتور را در حالت پایدار شبکه، به صورت مستقل از هم در نظر گرفت.
پاسخ ژنراتورهای سنکرون شبکه به تغییرات فرکانس را می‌توان به سه مرحله تقسیم بندی کرد [2]:

  • ابتدا به ساکن پس از تشخیص عدم توازن در سیستم، روتور‌های ژنراتورها انرژی آزاد و یا جذب می کنند و این مسأله باعث تغییر در فرکانس سیستم می‌گردد. به این مرحله کنترلی اصطلاحا پاسخ اینرسی گفته می‌شود.
  • زمانی که تغییرات فرکانس از مقدار معینی بیشتر شد، کنترل کننده‌ها برای تغییر توان ورودی به سیستم فعّال می‌شوند و این مرحله را اصطلاحاً کنترل اولیّه فرکانس می‌نامند. این مرحله کنترلی حدود 10 ثانیه پس از وقوع حادثه آغاز و تا 20 ثانیه پس از آن نیز استمرار می‌یابد.
  • پس از آن که کنترل کننده‌های موجود اغتشاش بوجود آمده را اصلاح کردند، سیستم مجدّداً متعادل می‌گردد؛ اگرچه که فرکانس سیستم از مقدار نامی خود فاصله دارد. در این مرحله واحدهای تولید شبکه وظیفه باز گرداندن فرکانس سیستم به مقدار نامی آنرا بر عهده می‌گیرند. این مرحله کنترلی را کنترل ثانویه فرکانس می نامند. این مرحله از 30 ثانیه پس از زمان بروز اغتشاش شروع شده و می‌تواند تا 30 دقیقه پس از آن نیز ادامه یابد.

در یک توربین ژنراتور، رفتار دینامیکی کلی بار-تولید و انحراف فرکانس به صورت زیر بیان می‌شود:

(2-1)

که در آن  انحراف فرکانس،  انحراف توان مکانیکی و  میزان تغییرات بار می‌باشد. ثابت اینرسی با  و ثابت میرایی با  نشان داده شده ‌است. با گرفتن تبدیل لاپلاس از معادله ی فوق، رابطه زیر حاصل می‌شود:

(2-2)

می‌توان معادله فوق را به صورت بلوک دیاگرام نشان داده شده در شکل (2-1) نمایش داد.
شکل 2- 1 بلوک دیاگرام مدل توربین ژنراتور
 همچنین برای مدلسازی گاورنر، می‌توان از مدل ساده شده ی شکل (2-2) استفاده کرد.
شکل 2- 2 مدل ساده شده ی گاورنر
دقت شود که در شکل (2-2)،  معرف دروپ گاورنر،  ثابت زمانی گاورنر و  رفرنس مرجع بار است. مدل ساده شده ی توربین نیز به صورت شکل (2-3) در نظر گرفته شده ‌است.
شکل 2- 3 مدل ساده شده ی توربین
علاوه بر این، مدل باز گرمکن توربین‌های بخاری را می‌توان با بلوک دیاگرام نشان داده شده در شکل (2-4) مدل کرد:
شکل 2- 4 مدل توربین باز گرمکن
بنابر این بلوک دیاگرام حلقه اولیّه کنترل بار فرکانس صورت شکل (2-5) در خواهد آمد.
شکل 2- 5 مدل خطی و ساده شده کنترل فرکانس سیستم قدرت
برای مدل کردن کنترل فرکانس یک سیستم ایزوله یا جزیره ای می‌توان کل مجموعه را به صورت شکل 2-5 در نظر گرفت. مدل ارائه شده می‌تواند به عنوان مدل پاسخ فرکانسی معادل برای کل سیستم در نظر گرفته شود. در مدل جدید  و  مجموع  و ‌ های آن ناحیه می‌باشد.
در یک سیستم جزیره ای، تنظیم خطای انتقال توان بین ناحیه ای جزو وظایف کنترل بار فرکانس نیست. تنها وظیفه کنترل بار فرکانس باز گرداندن فرکانس آن ناحیه به مقدار نامی است. برای این که بتوان مدل شکل (2-6) را به یک سیستم قدرت چند ناحیه ای تعمیم داد، بایستی مفهوم ناحیه کنترلی به گونه ای تعریف شود که در برگیرنده گروهی از ژنراتورهای همپا باشد. همپایی به این مفهوم است که همه ی ژنراتورها نسبت به تغییرات بار جهت یکسانی داشته باشند. ضمنا در هر ناحیه، کنترل بار فرکانس برای تمام آن ناحیه فرض شود.
یک سیستم قدرت چند ناحیه ای از نواحی کنترلی مجزایی تشکیل یافته است که به وسیله خطوط انتقال به یکدیگر متصل شده‌اند. انحراف فرکانس در هر ناحیه، نه تنها ناشی از تغییرات بار آن ناحیه است، بلکه تغییرات توان انتقالی خطوط بین ناحیه ای نیز در آن تاثیرگذار است.
شکل 2- 6 مدل کنترل بار فرکانس سیستم چند ماشینه
کنترل فرکانس در هر ناحیه نه فقط مسئول کنترل فرکانس همان ناحیه است، بلکه مسئولیت کنترل توان انتقالی خطوط ارتباطی با نواحی دیگر را نیز باید برعهده گیرد. بنابراین در یک سیستم چند ناحیه ای قدرت، بایستی تأثیر خطوط انتقال توان بین ناحیه ای را در مدلسازی کنترل بار فرکانس در نظر داشت. در شکل (2-7) یک سیستم دو ناحیه ای نشان داده شده ‌است.
شکل 2- 7 شماتیک کلی سیستم دو ناحیه ای قدرت
در این شکل رابطه بین توان انتقالی از خطوط ارتباطی بین دو ناحیه طبق رابطه (2-3) حاصل می‌شود:

(2-3)

که در آن  و  ولتاژ‌های نواحی کنترلی 1 و 2 بوده و  و  زاویه‌های بار ماشین‌های معادل نواحی 1 و 2 می‌باشد. منظور از  راکتانس خط بین ناحیه ای می‌باشد.
 با خطی سازی رابطه  (2-3)  حول نقطه کار   و  خواهیم داشت:
 

(2-4)

که در آن  گشتاور سنکرون کننده نام داشته و برابر است با:

(2-5)

با استفاده از تابع تبدیل  خواهیم داشت:

(1-6)

در یک سیستم چند ناحیه ای علاوه بر تنظیم اولیّه فرکانس ناحیه، کنترل مکمل بایستی انحراف توان عبوری از خطوط بین ناحیه ای را نیز به صفر برساند. با افزودن یک کنترلر انتگرال‌گیر به این حلقه کنترلی، این اطمینان حاصل می‌شود که اولاً انحراف موجود در فرکانس و دوماً توان انتقالی خطوط در حالت ماندگار به صفر می‌رسد. سیستم کنترلی که دو هدف عمده فوق پوشش می‌دهد را اصطلاحاً کنترل خودکار تولید می نامند. کنترل خودکار تولید با اضافه کردن یک سیگنال کنترلی جدید در حلقه کنترلی فیدبک صورت می پذیرد. همانگونه که در معادله (2-7) آید، سیگنال کنترلی مذکور که سیگنال خطای ناحیه نامیده می‌شود، ترکیبی خطی از تغییرات فرکانس ناحیه به انضمام تغییرات توان انتقالی خطوط انتقالی می‌باشد:

(2-7)

که در آن  ضریب بایاس ناحیه (رابطه 2-8)،  تغییرات فرکانس ناحیه و  تغییرات توان خطوط انتقالی است. بلوک دیاگرام نهایی شبکه قدرت که درآن کنترل اولیّه و ثانویه فرکانس لحاظ شده ‌است در شکل (2-8) آمده است.
معمولاً پیشنهاد می‌شود، ضریب  به صورت زیر انتخاب شود:

(2-8)

در رابطه فوق  مشخّصه دروپ و  ضریب حسّاسیت بار نسبت به تغییرات فرکانس می‌باشد. شکل 2-8 چگونگی اعمال کنترل تکمیلی یا ثانویه را نشان می‌دهد.
تاثیر تغییرات بار محلی و توان عبوری از خطوط بین ناحیه ای، در مدل شکل (2-8) به خوبی در نظر گرفته شده ‌است. هر ناحیه کنترلی، توان عبوری از خطوط بین ناحیه ای و فرکانس ناحیه ی خود را در مرکز کنترل ناحیه خود کنترل می‌‎کند. سیگنال  بعد از محاسبه، وارد کنترل کننده ی واحد دیسپتچ می‌شود. سیگنال کنترلی تولیدی به عنوان رفرنس بار به توربین گاورنر مورد نظر اعمال می‌شود. بنابر این دیاگرام کنترلی پیشنهادی می‌تواند اهداف اولیّه کنترل بار فرکانس را برآورده ساخته و مقدار توان عبوری از خطوط و همچنین فرکانس ناحیه را به مقدار مشخّص شده برگرداند. 
فرض کنید در یک ناحیه کنترلی شاهد تغییر بار به مقدار  باشیم. افزایش بار سیستم باعث کاهش فرکانس سیستم می‌شود. می‌توان مقدار اولیّه این انحراف را تابع عوامل زیر دانست:

  • انرژی جنبشی موجود در قسمت گردان ماشین‌ها (لختی)
  • تعداد ژنراتورهایی که دارای کنترل اولیّه می‌باشند و ظرفیت رزرو موجود در این واحد‌های

دانلود پایان نامه ارشد:شناسایی فرورزونانس در شبکه های توزیع انرﮊی الکتریکی توسط تبدیل موجک

متن کامل پایان نامه مقطع کارشناسی ارشد رشته :مهندسی برق

گرایش :قدرت

عنوان : شناسایی فرورزونانس در شبکه های توزیع انرﮊی الکتریکی توسط تبدیل موجک

Continue reading “دانلود پایان نامه ارشد:شناسایی فرورزونانس در شبکه های توزیع انرﮊی الکتریکی توسط تبدیل موجک”

پایان نامه های دانلودی رشته مکانیک

متن کامل رساله دکتری مکانیک-طراحی کاربردی -مدلسازی ساختاری آلیاژهای حافظه‌دار مشبک به روش میکروصفحه

دانلود متن کامل پایان نامه

Continue reading “متن کامل رساله دکتری مکانیک-طراحی کاربردی -مدلسازی ساختاری آلیاژهای حافظه‌دار مشبک به روش میکروصفحه”

پایان نامه: بررسی اثر نانو اکسید روی بر معادلات جذب تعادلی، خواص مکانیکی، فیزیکوشیمیایی و پارامترهای معادلات رشد میکروبی فیلم تهیه شده از قدومه شیرازی

متن کامل پایان نامه مقطع کارشناسی ارشد رشته: علوم و صنایع غذایی

عنوان : بررسی اثر نانو اکسید روی بر معادلات جذب تعادلی، خواص مکانیکی، فیزیکوشیمیایی و پارامترهای معادلات رشد میکروبی فیلم تهیه شده از قدومه شیرازی

دانشگاه آزاد اسلامی

پایان­نامه کارشناسی ارشد رشته­ مهندسی علوم و صنایع غذایی

عنوان:

بررسی اثر نانو اکسید روی بر معادلات جذب تعادلی، خواص مکانیکی، فیزیکوشیمیایی و پارامترهای معادلات رشد میکروبی فیلم تهیه شده از قدومه شیرازی

استاد راهنما:

دکتر دانیال فدایی

Continue reading “پایان نامه: بررسی اثر نانو اکسید روی بر معادلات جذب تعادلی، خواص مکانیکی، فیزیکوشیمیایی و پارامترهای معادلات رشد میکروبی فیلم تهیه شده از قدومه شیرازی”

پایان نامه ارشد:ارزیابی شبکه های توزیع آب با استفاده از روش آنتروپی اطلاعات بر پایه عدم قطعیت های مکانیکی و هیدرولیکی

متن کامل پایان نامه مقطع کارشناسی ارشد رشته :مهندسی عمران

گرایش :زلزله

عنوان : ارزیابی شبکه های توزیع آب با استفاده از روش آنتروپی اطلاعات بر پایه عدم قطعیت های مکانیکی و هیدرولیکی

Continue reading “پایان نامه ارشد:ارزیابی شبکه های توزیع آب با استفاده از روش آنتروپی اطلاعات بر پایه عدم قطعیت های مکانیکی و هیدرولیکی”

پایان نامه ارشد: تحلیل غیر خطی دینامیکی و ارتعاشی نانولوله کربنی در سیستم نانوالکترومکانیک‌ سوییچ

دانلود متن کامل پایان نامه مقطع کارشناسی ارشد رشته مهندسی مکانیک

گرایش : طراحی کاربردی

عنوان : تحلیل غیر خطی دینامیکی و ارتعاشی نانولوله کربنی در سیستم نانوالکترومکانیک‌سوییچ با استفاده از تئوری غیر‌محلی الاستیسیته

Continue reading “پایان نامه ارشد: تحلیل غیر خطی دینامیکی و ارتعاشی نانولوله کربنی در سیستم نانوالکترومکانیک‌ سوییچ”

پایان نامه ارشد:آنالیز انرژی و اگزرژی چرخه توان زباله سوز با استفاده از بازیافت انرژی سرد گاز طبیعی مایع شده به همراه استفاده از گاز طبیعی حاصله به عنوان سوخت اضافی زباله سوز

دانلود متن کامل پایان نامه مقطع کارشناسی ارشد رشته مکانیک

گرایش : تبدیل انرژی

عنوان : آنالیز انرژی و اگزرژی چرخه توان زباله سوز با استفاده از بازیافت انرژی سرد گاز طبیعی مایع شده به همراه استفاده از گاز طبیعی حاصله به عنوان سوخت اضافی زباله سوز

Continue reading “پایان نامه ارشد:آنالیز انرژی و اگزرژی چرخه توان زباله سوز با استفاده از بازیافت انرژی سرد گاز طبیعی مایع شده به همراه استفاده از گاز طبیعی حاصله به عنوان سوخت اضافی زباله سوز”

دانلود پایان نامه ارشد: بررسی امکان کاهش مصرف انرژی در واحد کت کراکر پالایشگاه آبادان از طریق بهینه سازی متغیرهای فرایندی

دانلود متن کامل پایان نامه مقطع کارشناسی ارشد رشته مهندسی مکانیک

عنوان : بررسی امکان کاهش مصرف انرژی در واحد کت کراکر (FCCU) پالایشگاه آبادان از طریق بهینه سازی متغیرهای فرایندی

Continue reading “دانلود پایان نامه ارشد: بررسی امکان کاهش مصرف انرژی در واحد کت کراکر پالایشگاه آبادان از طریق بهینه سازی متغیرهای فرایندی”